A new method for quantifying flake scar organisation on cores using orientation statistics

Sam Lin^{1,2}, Chris Clarkson^{3,2}, I Made Agus Julianto⁴, Anton Ferdianto^{1,2,5}, Jatmiko⁵, Thomas Sutikna^{5,2}

¹University of Wollongong; ²ARC Centre of Excellence for Australian Biodiversity and Heritage; ³University of Queensland; ⁴Udayana University; ⁵Badan Riset dan Inovasi Nasional (BRIN)

Introduction

Core scar patterning is key to understand past flaking technologies.

- Typically described by **qualitative units**. e.g., unidirectional, bifacial, radial, etc.
- Issues of subjectivity and replicability (Pargeter et al. 2023).

Clarkson et al. (2006) developed the Scar Pattern Index (SPI).

- Quantify scar 'parallelness' among similar core technologies (Bretzke & Conard 2012; Lombao et al. 2022).
- But distinct core types can produce similar SPI values. Difficult to compare different core technologies.

Orientation analysis

Commonly used to summarise the orientation of archaeological remains during excavation.

Can we apply orientation analysis to measure core scar orientation, with each core treated as an 'assemblage' of scars?

Liang Bua

Type locality of Homo floresiensis on Flores, Indonesia

- Stone artefacts made by *Homo floresiensis* (190–50 ka) & *Homo sapiens* (46 ka–present) (Sutikna et al. 2016)
- Continuity of simple core reduction techniques (Moore et al. 2009).

- H. sapiens: lower isotropy values
- Scars more parallel.
- Flaking along similar axes.

H. floresiensis: higher and more variable isotropy values

- Scars more 'jumbled'.
- Flaking along variable angles and axes.
 Corresponds to more core rotations (Lin et al. 2024).

Measuring core scar orientation

Extract 3D scar vectors relative to best-fit plane

 Define scar vectors using start & end points of observable scars ≥0.5 cm (Geomagic Wrap).

- Fit a best-fit plane to core volume (Geomagic Wrap).
- Rotate such that the best-fit plane aligns with the X-Y plane and the longest scar vector aligns to the X-axis (Rhino 7).

Compute scar orientation statistics in R

• **Isotropy:** scar inclination relative to best-fit plane (plunge).

Elongation: scar arrangement along

• Summarise in a ternary diagram.

best-fit plane (bearing).

Experimental results

- Uni/bidirectional: high elongation, low isotropy
- **Discoid/Levallois/biface:** low elongation, variable isotropy
- **Polyhedral:** low elongation, high isotropy
- **Multiplatform:** variable as the type is not defined by specific scar patterns.

Summary & Conclusion

Orientation analysis useful for quantifying core scar arrangement.

• Detect new patterns about reduction, esp. among informal cores.

Liang Bua

• Hominin difference in core reduction pattern, with *H. floresiensis* detaching flakes from more variable angles via frequent rotations.

Aldeias et al. (2014). Journal of Human Evolution, 69, 8-30. Bretzke & Conard. (2012). Journal of Archaeological Science, 39(12), 3741-3749.

Clarkson et al. (2006). Journal of Archaeological Science, 33(1), 132-142.
 Lin et al. (2024). Journal of Archaeological Science, 167, 105998.

Lombao et al. (2022). Journal of Archaeological Method and Theory, 1-38.
 Moore et al. (2009). Journal of Human Evolution, 57(5), 503-526.